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Abstract—In this work we present an indoor location method 

using smartphones as a source of location information. The 

proposed method uses the Received Signal Strength Indicator 

(RSSI) value from Bluetooth Low Energy Beacons scattered 

around interior spaces. We present the results of our model using 

machine learning, which was developed based on measurements 

of RSSI values from Beacons inside a lab environment occupying 

a space of 31m2. Measurements were fed to the open-source 

TensorFlow framework to develop an estimator of the distance 

between the mobile phone and the beacon. Next, based on the 

cross-sections of peripheral lines having as a center the location 

of the Beacons and radius the predicted distances we compute the 

intersection points from all circles and base our position 

estimation on the Geometric median of intersection points. 

Through experiments, we show that our system has an average 

accuracy of 69.58cm and can predict position with an accuracy of 

less than a meter in 80% of the cases. 

Keywords-Indoor Localization, Bluetooth, Beacons, Machine 

Learning 

I.  INTRODUCTION 

Indoor positioning systems are becoming a vital part of the 
so called Internet of Things (IoT) [1] and applications used to 
estimate the location of a subject in areas like malls, airports, 
libraries, hospitals, etc., which are enablers for services such as 
context-based advertising, indoor navigation, robotics 
applications, emergency response, assisted living, etc. 

There are many systems available for outdoor positioning 
GPS, A-GPS, Galileo, etc. However, they are available only 
outdoors and cannot provide the necessary accuracy for an 
indoor positioning application.  For example, GPS can provide 
maximum accuracy of 5 meters. An accuracy not suitable for 
interior areas. 

Many techniques have been developed to estimate the 
location in interior environments based on deferent techniques, 
such as, UWB signals [2], ultrasounds [3], RFID [4], Channel 
State Information (CSI) in WiFi networks [5], [6], etc. But all 
these methods require specialized hardware and therefore 
cannot be used on smartphones in our case, where we want to 
develop a system with no use of any special hardware. 

Indoor localization approaches based on RSSI 
measurement of wireless signals such as WiFi and Bluetooth 
[7] are the most popular due to their low infrastructure cost, 
their use in all smartphones and potential high accuracy. The 
majority of approaches used today are based on Wi-Fi signals 

to estimate indoor locations. Additionally, most usually they 
are using algorithms to estimate the distance from a known 
position. 

The remainder of the paper is organized as follows. In 
section II we review the related recent work in the literature. In 
section III we summarize the basics of our positioning model 
approach. Section IV describes the data collection process for 
the development and training of our machine learning model. 
In section V we provide a detailed description of our model. 
Finally, the paper concludes with presenting the results in 
Section VI and a discussion and conclusions in Section VII. 

II. RELATED WORK 

Indoor positioning and accurate location tracking are open 
research problems that have attracted the interest of many 
researchers in recent years [7], [8], which have used different 
approaches based on different technologies and exploiting 
different methods to address them. Methods of indoor 
localization are usually based on monitoring the radio signal 
strength, the so-called Received Signal Strength Indicator 
(RSSI) value from wireless signals such as WiFi and Bluetooth 
[9]. The RSSI from wireless signals and specifically from 
Bacons (low-cost transmitters based on Bluetooth low energy 
that broadcast their identifier to nearby mobile devices) is the 
most popular method with many researchers using this method 
as a solution in recent years. 

Authors in [10] proposed an Iterative Weighted K Nearest 
Neighbors (IW – KNN)  method based on RSSI of the BLE. 
They propose three principal improvements. First, Euclidean 
distance and Cosine similarity are combined to measure the 
similarity of two RSSI vectors, which can take both length and 
direction of the vector into consideration. Second, unlike 
traditional k-NN which estimates a position by a majority vote 
of its neighbors, a weighting factor is applied to neighbors for 
localization. Third, IW-KNN selects different iBeacons to 
obtain RSSI at each iteration and calculates the mean position 
as the final result after several iterations. They can estimate 
positions effectively and reduce the mean error by 1.5 to 2.7 
meters in an experimental environment dividing the interior 
space in a dense grid with a size of 60cm. In [11] a k-NN 
algorithm is proposed based on the Bluetooth fingerprint 
library location method also dividing the interior space 
selecting a grid with a size of 1m. The k-NN algorithm 
processes the matching of measured RSSI value and the closest 
value in the fingerprint library. The positioning accuracy is 



controlled within 1 meter and basically controlled within the 
designed grid, thus realizing the positioning requirements. 

The proposed Trilateration algorithm in [12] is an easily 
implemented solution due to its low complexity and operates 
independently of any predefined grid. On average this system 
has an error of about 1 meter. In [13] authors experimented 
with mathematical filtering functions to smooth RSSI and 
improve accuracy. They use functions like median, mode, 
single direction outlier removal, shifting and feedback filtering. 
For position calculation, they use a trilateration algorithm and 
achieve an accuracy of about 1-2 meters. 

In recent years, many efforts have been made to make use 
of machine learning algorithms for indoor location systems. In 
[14], a machine learning approach to indoor positioning for 
mobile targets based on BLE signals is proposed. The authors 
in [14] design a feature vector for the position prediction and 
perform machine learning with well-known decision-tree based 
algorithms, which is shown to achieve a predictive accuracy 
less than one meter. In [15] a BLE based machine learning 
location and tracking system for indoor positioning with 
experimental results is proposed showing that this method has 
an average estimation error of 50 cm. 

Following the advances described above we have been 
investigating methods that can exploit the latest powerful 
machine learning technologies to solve the problem of indoor 
location with an accuracy much closer than 1m based on low 
cost solutions. Machine learning is becoming ubiquitous, with 
the cost of hardware reducing fast and new methods and tools 
providing efficient solutions to a large number of problems 
related to the processing of signals from sensor and IoT 
networks in order to enable smart applications and lead to 
actual Artificial Intelligence. Therefore, in [16] we presented a 
system where we use a smartphone to find the location by 
using the measured RSSI value from Bluetooth Beacons 
combined with measurements from other smartphone sensors 
and feeding a machine learning model. The approach of our 
past work in [16] was based on the selection of a grid layout of 
the interior space, against which the user positioning was 
attempted based on the signals received from the Beacons 
installed in fixed locations, i.e. similar to the approach 
followed in [10] and [11], however with improved accuracy i.e. 
accurate user positioning within less than a meter.  

In this work we present an improved method, which can 
exploit powerful machine learning as in [14], [15] and  [16] but 
can also achieve improved performance, while operating in 
real-time and independent of any interior grid layout. In this 
work, we develop a machine learning model to solve a 
regression problem. This way we overcome the need to select a 
predefined grid as was done in [15] and [16], which also 
simplifies the model training process and leads to improved 
accuracy. Additionally, we demonstrate an average accuracy of 
69.58cm and we can predict position with an accuracy of less 
than a meter in 80% of all cases. It is important to stress that 
our method can operate in real-time, while the grid-based 
method presented in  [15] can achieve comparable results at the 
cost of repeated RSSI measurements at each location, which 
can be applicable only for semi-static and not actual mobile 
users.  

III. OUR MODEL 

Our positioning model introduces a system for finding 
indoor locations with high precision in real-time by making use 
of the Bluetooth RSSI values obtained from smartphones. We 
chose to make use of Bluetooth Beacons because they have 
several advantages against other indoor localization 
technologies. The main advantage of this approach is that the 
cost for the required infrastructure is low, since it only requires 
a number of Bluetooth Beacons (we experimented with a ratio 
of 1 Beacon per about 6m2 of internal space to achieve best 
coverage with no blind spots) scattered around the interior 
space in predefined and known positions (e.g. walls, ceiling 
etc.) [10], [11], [14], [15]. Additionally, smartphones are 
considered ubiquitous and can be the optimal device that can 
enable internal location tracking of humans (else any other 
embedded Bluetooth device for tracking “things” equipped 
with such sensors). 

We can divide our internal location estimation approach 
into three phases.  

• In the first phase, our system makes use of a set of 
machine learning models (one for each Beacon 
deployed in the interior space). These models are used 
to predict the distance from the smartphone and a 
specific Beacon based on the current RSSI level 
measurement and its comparison against past 
measurements collected and used during the training 
phase. 

• In phase two our system takes as input the distances 
from the Beacons from the first phase and calculates the 
peripheries of circles that have as a center the Beacons’ 
location and as a radius the distances found in phase 
one. After that, we find the intersection points of all 
circles. 

• In the third and last phase, our system gets as input the 
intersection points from phase two and finds the 
geometric median from the intersection points. This 
geometric median point is defined as the estimated 
location. 

IV. DATA COLLECTION 

The first step in developing our system was to set up a data 
collection procedure to train and evaluate our neural network 
models for phase one of predicting the distance from Beacons. 

To create the data collection, we used five iBKs105 
Bluetooth Beacons from Accent Systems that we placed in 
different locations around a 31m2 apartment “Fig. 1”. The 
locations of the Beacons are fixed and we know the distances 
(x and y) from the lower left corner of the apartment for each 
Beacon. 

Then by using an application that we have developed on 
Android for a commercial smartphone we started to move 
around the space of the apartment and take measurements. For 
each measurement, we record the current position of the 
mobile (distance for upper and left walls x and y), the RSSI 
values for all five Beacons, the distance from each Beacon, and 
the timestamp of the moment we took the measurement. The 
mobile phone we used to collect the data is a Xiaomi Mi A1. 



In total, we have gathered 11110 measurements to train and 
validate our model. 

 

Fig. 1. Apartment map with Beacon locations. 

V. DEVELOPMENT AND TRAINING OF OUR MACHINE 

LEARNING MODEL 

A. Phase One 

For the first phase of our system, we develop a machine 
learning system using the TensorFlow framework to predict the 
distance between the location of the mobile phone and a 
specific Beacon. In total, we have developed five different 
models. For each one, we get as input the RSSI values from all 
Bluetooth Beacons and as a target, we have the prediction of 
the distance from a specific Beacon. 

We divide our 11110 measurements into two groups, one 
for training and one for validation. For the training of our 
models, we use 80% of our measurements, 8888 out of the 
11110 in total, and for the validation the remaining 2222. The 
division of the measurements into two groups was random. 

Our neural network models are sequential models with two 
densely connected hidden layers, and an output layer that 
returns a single, continuous value “Error! Reference source 
not found.”. 

 

Fig. 2. Our neural network model in TensorFlow framework 

Then we trained our models using the 8880 measurements 
we retained for training and set the training to progress through 
1000 epochs. In “Fig. 3” we can see how our model reduces 
the Mean Square Error (MSE) in calculating the distance 
between the actual user position and each Beacon in total 
(during the training and validation phases vs. the training 
epochs). 

 

Fig. 3. Mean square error reduction vs. epoch evolution (overall). 

 

Fig. 4. Mean average distance error reduction for each Beacon. 

In “Fig. 4” respectively we show how the Mean Average 
Error in distance estimation reduces for each Beacon. 

 

Fig. 5. Plot of predicted distance from our model against the actual distance of 

the user from Beacon A for the set of 2222 measurements 

def build_model(): 

    model = keras.Sequential([ 

        layers.Dense(64, activation='relu', 

input_shape=[len(train_dataset.keys())]), 

        layers.Dense(64, activation='relu'), 

        layers.Dense(1) 

    ]) 

 

    optimizer = tf.keras.optimizers.RMSprop(0.001) 

 

    model.compile(loss='mse', optimizer=optimizer, 

metrics=['mae', 'mse']) 

    return model 

 



To evaluate our model, we used the group of the collection 
(2222 measurements) that we retained for testing. In “Error! 
Reference source not found.” we draw for each measurement 
the points in a X-Y plot. The coordinates of each point 
represent the actual distance of the user from Beacon A in X-
axis and our model prediction in Y-axis. 

In “Fig. 6” we show the distribution of the prediction error 
(ε) for our model for each testing measurement. 

 

Fig. 6. Distribution of the prediction error (ε)  

B. Phase Two 

In phase two we get the predicted distances from each 
Beacon as estimated using the corresponding model from 
phase one. With these predicted distances we create circles 
having as a center the known position of the Beacon and a 
radius equal to the predicted distance from the model. After 
that, we find the intersection points of all circles “Fig. 7” With 
blue color in “Fig. 7” we show the circles having as a center 
the five Beacons and radius the predicted distance from phase 
one, while the red dots are the intersection points. 

Estimated user positionActual user position

 

Fig. 7. Phase two and three point calculation 

C. Phase Three 

In the last phase, we get as input the intersection points 
from phase two and finds the Geometric median from the 
intersection points. The geometric media point is defined as the 
predicted location. 

In “Fig. 7” we indicate with the green cross the calculated 
geometric median point, which represents our location 
estimation and the cyan cross the real location. 

VI. RESULTS 

From the results we present in this section, we can conclude 
that our system has been able to achieve good accuracy in 
predicting the real position of the user. In “Fig. 8”, we present 
the histogram of the distribution of the distance error (denoted 
with ε, in “Fig. 7”) between the actual and predicted positions. 
In “Table I” that follows we show the values of the error 
distribution. The error calculation is based on the set of 2222 
measurements that was used for testing of the model estimation 
against the actual user position. 

We observed that our system has an average accuracy of 
69.58cm and can predict the location with less than a meter 
accuracy in 80,55% of all cases and with an accuracy of fewer 
than 1.5 meters in 93.92% of the cases.  

 

Fig. 8. Distance error (ε) distribution  

TABLE I.  DISTANCE ERROR (Ε) DISTRIBUTION 

 0-25 25-50 50-75 75-100 100-125 125-150 >150 

Count 324 570 488 408 200 97 135 

Percentage 14.58 25.65 21.96 18.36 9.01 4.37 6.08 

VII. CONCLUSION 

It is essential to develop a localization system that can 
achieve high levels of accuracy in building-scale real-world 
environments using low cost and ubiquitous technologies like 
those available in smartphones and Bluetooth devices. In this 
paper, we considered the challenges of developing a system by 
using RSSI from Bluetooth Beacons following a machine 
learning approach. We create a dataset with values from 
Bluetooth RSSI and train the neural network model to predict 
the distance from a specific Beacon. After that we use the 



predicted distances to find the intersection points and used the 
Geometric median of these points as the final location 
estimation. Our system does not require any kind of grid in the 
indoor space layout and it is shown to achieve an average error 
of 69.58cm. Overall the user position was estimated with a 
localization error below 1m in 80,55% of all cases. 

VIII. FUTURE WORK 

Our next steps will be to test our model in a larger area with 
a more complex environment and with more Bluetooth 
beacons. A potential approach to increase scalability would be 
to extend our system by adding a phase before phase one. In 
this new phase (phase zero) the system will read the RSSI 
values from all Bluetooth Beacons and will decide which 
Beacons to use in phase one. 
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